TeraStor's Near-Field Recording

Dr. Gordon Knight

Co-Founder Chief Technical Officer TeraStor Corporation

TeraStor Corporation Background

- TeraStor founded December 1995
 - » Jim McCoy CEO (founder of Maxtor, co-founder of Quantum)
 - » Gordon Knight CTO (founder of Maxoptix & Optimem)
 - » Bill Dobbin CFO
- Initial Seed Funding February 1996
 - » Demonstrate Near Field technology June 1996
- First Round Financing July 1996
 - » Begin full staffing of engineering team
 - » Initiate product development
- Over \$85M investment to date

TeraStor Mission

- To deliver a new class of storage products, providing the highest areal density, based on near-field recording and the solid immersion lens.
- To develop and introduce products with target capacities approaching 20 gigabytes per disk surface.
- To develop product families with both removable and fixed media.

Near Field Recording - Technology Evolution

- Optical flying head/First surface recording
 - » Basic technology developed by Digital.
 - Extensive patent portfolio (26 patents)
 - » Patents acquired by Quantum as part of their acquisition of the Digital storage business
 - » Co-exclusive patent rights granted to TeraStor by Quantum
- Solid Immersion Lens (SIL) technology
 - » Basic technology developed and patented at Stanford University
 - » Exclusive patent rights granted to TeraStor by Stanford

Conventional Optics Overview

- An optical lens bends light according to the index of refraction (n) of the lens material
- Numerical Aperture, which limits the focused spot diameter is defined as:

$$NA = n Sin \theta_{max}$$
, which means $NA \le 1$ (in air)

- The highest commercially practical NA achieved to date is .65, common magneto-optical drives use NA ≅ .55
- The diameter of a focused spot of light is dependent on the wavelength of light and the NA of the lens and is defined as:

$$d \approx .5 \lambda / NA$$

Numerical Apertures

Near-field Optics

- Spot Diameter without SIL ≈ .5λ/NA
- Light entering SIL is not bent but is slowed by a factor of n compared to air

• Wavelength of light in SIL = λ /n

Spot diameter in SIL ≈ .5λ/(NA•n)

» Diameter reduced by factor of n

Numerical Aperture of Objective Lens = NA -

Normal Incidence Angle

Diameter of Spot

SIL Index of Refraction = n

Disk Surface

Evanescent Coupling

- Provides energy transfer from the SIL to the surface of the media
 - » Unlike conventional magneto-optical products, the laser is not focused on the surface of the media, instead it is focused at the bottom of the SIL
- Well understood from Near-field Scanning Optical Microscopy
- Allows image of small spot inside SIL to be pulled to the surface of the media.

Evanescent Fields

NFR Components

Solid Immersion Lens

- » Based on liquid immersion microscopy
- » Allows Numerical Aperture of much greater than 1 by using high index of refraction material
- » Shape of the SIL allow for tighter focus of light spot
- First Surface Recording
 - » Places recording films in near-field proximity to the head
- Flying Optical Head
 - » Provides tight focus tolerances within the near-field and eliminates focus servo found in conventional magnetooptical products
- Crescent Recording
 - » Allows for bit densities of > 200,000 bits per inch with SIL

Architecture of TeraStor's Near-Field Recording Technology

Recording Area Compared

Crescent Recording Increases Linear Density

Traditional Optical

Crescent Recording

Vertically recorded spots

NFR Media

- Uses conventional MO recording films
- Stamped plastic substrate and first surface recording allows media costs to be competitive with tape
- Vertical magnetic domains allow for smaller spots than magnetic recording
- Proven domain stability, no super-paramagnetic effects
 - » Magnetic recording domains become unstable at room temperature somewhere between 20Gb/in² and 40Gb/in²
 - » Magneto-optical media has been proven stable at densities beyond the superparamagnetic "limit" (AT&T 1992)
- Long shelf life approaching that of conventional magnetooptical products
- Infinite rewrite passes, unlike phase change media

TeraStor Disk Structure

Magnetic Domains

MFM Image

AFM Image

TeraStor Disk Structure

Traditional MO

Plastic Substrate

Dielectric

Magneto/Optical Storage Layer

Dielectric

Reflector

Near Field Recording

Overcoat

Dielectric

Magneto/Optical Storage Layer

Dielectric

Reflector

Plastic Substrate

The Two Stage Servo

- Combines movements of a primary actuator and laser scanning
- Radial run out taken out with rotary actuator
- Instantaneous near track seeks with galvanometer mirror
- High bandwidth micro-mirror galvanometer allows for order of magnitude increase in track densities over magnetic recording
- Improved track acquisition capability
- Improved shock resilience

TeraStor Servo Design

TeraStor Product Highlights

- High capacity removable cartridge drive
 - » target 20GB capacity
- » Removable NFR media
- » near hard disk performance
- » target availability Q498
- Announced automation solutions coming from:
 - » ATL Products

» Exabyte

» DISC

» Spectra Logic

» Overland Data

» Plasmon IDE

- » Others to follow
- Storage Management software commitments from 17 UNIX, NT, and Novell backup and nearline application developers

Features of TeraStor NFR

- > 10Gb/in² with red laser for first product
- ~ 20 GB per disk surface for first product
- Removable and fixed products will be developed
- Desktop hard drive performance
- Known growth path to >100Gb/in²
 - » different SIL material and shapes
 - » Shorter wavelength laser
- Areal density not limited by superparamagnetic effects

Optical Comparisons

	Conventional*	Near-Field	Blue Laser	Blue laser
	Magneto-Optical	Magneto-Optical	Conventional*	Near-Field
Laser Wavelength	685 nm	685 nm	410nm	410nm
Numerical Aperture	0.65	0.65	0.7	0.33
Index of refraction of SIL	n/a	2	n/a	3**
Potential Spot Size	0.53 micron	0.26 micron	0.29 micron	.07 micron
Maximum Areal Density	4Gb/in ²	16Gb/in2	13Gb/in2	238Gb/in2
* Conventional optics products include CD, DVD, ASMO, MO, and OAW			** SuperSIL shape	

Technology Comparison

	Recording Mechanism	Cyclability	Data Rate	Areal Density
Near-Field MO	Vertical Magnetic Media	Infinite	>160 Mb/sec	> 10 Gb/in ² today => >200 Gb/in ²
Far Field MO	Vertical Magnetic Media	Infinite	~48 Mb/sec	~ 1Gb/in ² today => <20 Gb/in ²
Phase Change	Amorpous Crystal Molecular change	10,000 to 500,000 cycles	~ 24 Mb/sec today (slow process)	~ 1Gb/in ² today => <15 Gb/in ²
Magnetic	In-plane Magnetic Media	Infinite	> 200 Mb/sec today	> 3Gb/in ² today => < 40 Gb/in ²

Conclusions

- Near-field recording with a Solid Immersion Lens combines the best advantages of magnetic and optical recording
 - » many components from HDD vendors
 - » Low cost plastic media
- Near-field recording is practical today
- Conventional far-field optical recording has fallen behind magnetic recording and cannot keep up (even for DVD-RAM, ASMO, and OAW)
- NFR technology can maintain a significant areal density advantage over magnetic recording for both fixed and removable media products

